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MULTISURFACE INTERFACE MODEL FOR ANALYSIS
OF MASONRY STRUCTURES

By Paulo B. Lourenco' and Jan G. Rots®

AssTtRACT: The performance of an interface elastoplastic constitutive model for the analysis of unreinforced
masonry structures is evaluated. Both masonry components are discretized aiming at a rational unit-joint model
able to describe cracking, slip, and crushing of the material. The model is formulated in the spirit of softening
plasticity for tension, shear and compression, with consistent treatment of the intersections defined by these
modes. The numerical implementation is based on modern algorithmic concepts such as local and global Newton-
Raphson methods, implicit integration of the rate equations and consistent tangent stiffness matrices. The pa-
rameters necessary to define the model are derived from microexperiments in units, joints, and small masonry
samples. The model is used to analyze masonry shear-walls and is capable of predicting the experimental collapse
load and behaviour accurately. Detailed comparisons between experimental and numerical results permit a clear
understanding of the walls structural behavior, flow of internal forces and redistribution of stresses both in the

pre- and post-peak regime.

INTRODUCTION

Masonry is a composite material made of units, e.g., clay
bricks or concrete blocks, and mortar. The large number of
influence factors, such as anisotropy of units, dimension of
units, joint width, material properties of the units and mortar,
arrangement of bed as well as head joints and quality of work-
manship, make the simulation of masonry structures extremely
difficult. Moreover, an accurate masonry description needs a
complete set of experimental data.

Recently, the masonry research community began to show
interest in sophisticated numerical models as an opposition to
the prevailing tradition of rules of thumb or empirical for-
mulae. These were, in general, acquired with years of practice
and experimental testing. The present article follows naturally
from a rational attempt to achieve a more fundamental insight
in the behavior of masonry and to permit more competitive
use of masonry. Here, attention will be given to micromodels,
wherein the two masonry components are modelled separately.
Interface elements are used as potential crack, slip, or crushing
planes. A new interface cap model, recently developed by the
writers see Lourengo et al. (1994), in modern plasticity con-
cepts, is able to capture all masonry failure mechanisms. The
model includes a tension cut-off for Mode I failure, a Coulomb
friction envelope for Mode II failure and a cap model for com-
pressive failure. In addition, interface elements are considered
to model potential cracks in the units. The implementation of
the model is briefly reviewed here and includes proper han-
dling of the nonsmooth corners, use of a local Newton-Raph-
son to solve the implicit Euler backward return mapping and
consistent tangent moduli. Such set of procedures leads to a
robust and accurate numerical algorithm that preserves qua-
dratic convergence. The parameters necessary to define the
model are derived from carefully displacement controlled mi-
croexperiments. The main difference between the present strat-
egy and the research carried out by other authors, see Lour-
engo and Rots (1993) for references and Lofti and Shing
(1994), lies in the assumption that all the inelastic phenomena
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occur in the interface elements. This assumption leads to a
robust type of modelling, capable of following the complete
load path of a structure until total degradation of stiffness. To
the knowledge of the authors most previous numerical mi-
croanalyses (and also most of the experimental results) are
limited to the structural prepeak regime. Computations beyond
the limit load down to a possibly lower residual load are, how-
ever, needed to assess the safety of the structure.

CAP MODEL. FOR MASONRY

An accurate model for masonry has to include the basic
types of mechanisms that characterize the material: (a) Crack-
ing in the joints; (b) sliding along a bed or head joint at low
values of normal stress; (c) cracking of the masonry units in
direct tension; (d) diagonal tension cracking of masonry units
at values of normal stress sufficient to develop friction in
joints; and (e) splitting of units in tension as a result of mortar
dilatancy at high values of normal stress (see Fig. 1). It is
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FiG. 1. Failure Mechanisms of Masonry: (a) Joint Tension
Cracking; (b) Joint Slip; (c) Unit Direct Tension Crack; (d) Unit
Diagonal Tension Crack; (e) Masonry Crushing



clear from the described phenomena that (a, b) are joint mech-
anisms, (c) is a brick mechanism and (d, e¢) are combined
mechanisms involving bricks and joints. Attempts to use in-
terfaces for the modelling of masonry were carried out in the
last decade with reasonably simple models and without in-
cluding all the above mechanisms, see Lourengo and Rots
(1993) for references.

The question remains of how to consider all phenomena in
the model. The approach followed here is to concentrate all
the damage in the relatively weak joints and, if necessary, in
potential pure tension cracks in the units placed vertically in
the middle of each unit (see Fig. 2). The joint interface yield
surface has then to include all the mechanisms referred above
except uniaxial tensile cracking of the unit. Inclusion of the
first two mechanisms (tensile and shear failure of the joint)
has been pursued before but the cap model here set forth is
novel. By limiting the compression/shear stress combinations
the compressive damage can be included in the model as well
as the combined mortar shear failure and unit diagonal tension
failure. The new interface cap model to be developed is used
at a micro-level. Remarkably, experiments carried out on, e.g.,
shear-walls (Mann and Miiller 1982) result in similar macro-
level yield surfaces (see Fig. 3).

The formulation of isoparametric interface elements has
evolved rather far and the reader is referred to Hohberg (1992)
for an exhaustive discussion. One of the most important issues
is the selection of an appropriate integration scheme, e.g., a

Interface elements
(joints)

Potential crack
in the unit

zero thickness
h, +hy

Continuum elements
(units)

FIG. 2. Suggested Modeling Strategy [Units (u), Which Are Ex-
panded in Both Directions by Mortar Thickness, Are Modeled
with Continuum Elements; Mortar Joints (m) and Potential
Cracks in Units Are Modeled with Zero-Thickness Interface Ele-
ments]

Izl
Crushing Tensile failure Shear failure °
of the of the of the
panel brick bed joints

FIG. 3. Failure Surface for Shear Walls (Mann and Miiller 1982)

lumped or Lobatto scheme, as Gauss integration was reported
to lead to oscillations of stresses when high stiffnesses are
used, see Rots (1988). An interface element allows disconti-
nuities in the displacement field and its behaviour is described
in terms of a relation between the tractions t and relative dis-
placements u across the interface. In the present paper such
quantities will be denoted as o, generalized stress, and €, gen-
eralized strain. In this case the elastic constitutive relation be-
tween siresses and strains is given as usual by

o =De (1)

For a 2D configuration D = diag(4,, k,}, o = (o, 7)" and € =
(u,, u;)", where n and 5 = normal and shear components, re-
spectively. The terms in the elastic stiffness matrix can be ob-
tained from the properties of both masonry components and
the thickness of the joint as

EMEM GHG”[

"= — By ST G, — Gy @

where E, and E,, = Young’s moduli; G, and G,, = shear moduli,
respectively, for unit and mortar; and ¢, = thickness of joint.
The stiffness values obtained from these formulae do not cor-
respond to a penalty approach, which means that overlap of
neighboring units subjected to compresston will become visi-
ble already in the elastic regime. This feature is, however,
intrinsic to the interface elements formulation and is indepen-
dent from the values of normal stiffness, even if it is clear that
the amount of penetration will be higher with decreasing in-
terface stiffness. The interface model includes a compressive
cap where the complete inelastic behaviour of masonry in
compression is lumped. This is a phenomenological represen-
tation of masonry crushing because the failure process in com-
pression is, in reality, explained by the microstructure of units
and mortar and the interaction between them. In the model the
failure mechanism is represented in such a way that the global
stress-displacement diagram is captured and corresponds to
one unit literally imploding over the other. As can be gathered
from some confusing statements in the literature, it takes some
time to get used to this zero or ‘‘negative’’ volume (in com-
pressed state) of interface elements (Hohberg 1992).

MULTISURFACE PLASTICITY

The elastic domain is bounded by a composite yield surface
that includes tension, shear and compression failure with soft-
ening (see Fig. 4). For the implementation of this model single
surface and multisurface plasticity theory is reviewed below
in modern concepts, including consistent tangent operators and
correct handling of the corners.

For multisurface plasticity the form of the elastic domain is
defined by each yield function f; < 0. Loading/unloading can
be conveniently established in standard Kuhn-Tucker form by
means of the conditions

N=0,£=0 and Nf=0 3)

Coulomb izl
Friction
Mode

Tension

: N o Mode
Initial yield surface Residual yield surface /

FIG. 4. Proposed Interface Cap Model

JOURNAL OF ENGINEERING MECHANICS / JULY 1997 / 661



where \; = plastic multiplier rate. Here it will be assumed that
the yield functions are of the form

filo, k) = P(o) + ¥i(k) “

where scalar k; = amount of hardening or softening; and ®,
¥, = generic functions. The usual elastoplastic equations for
single surface plasticity hold: the total strain rate € is decom-
posed into an elastic component €° and a plastic component
éP

E=¢6 + € 5)

the elastic strain rate is related to the stress rate by the elastic
constitutive matrix D as

o = Dg* ©6)

and the assumption of nonassociated plasticity yields

. d
e =1£ %
do
where g = plastic potential. The scalar k introduced before
reads, in case of strain hardening/softening

k= V(e"'e ®

For any corner of the proposed model two yield surfaces are
active and the previous equations must be appropriately stated
for multisurface plasticity. According to Koiter’s generaliza-
tion (Koiter 1953), (7) reads

®

and, assuming a form of explicit coupling for the hardening/
softening parameters, we obtain

+. comer

K™ =k, + {ok, and K3 =Lk + Kk, (10)

where {;, and {,, are coupling terms.

Integration of Elastoplastic Equations

The return mapping algorithm is strain driven and basically
consists of two steps, the calculation of the elastic trial stress,
also called the elastic predictor, and the return mapping to the
yield surface, i.e., the plastic corrector. We will use the implicit
Euler backward integration scheme due to its unconditional
stability (Ortiz and Popov 1985) and accuracy (de Borst and
Feenstra 1990). For single surface plasticity, manipulation of
(5)—(7) for finite increments and application of an implicit
Euler backward integration scheme gives the update of the
stress values as

T4 = Ty + Aon-ﬂ =0, + DAefH»l =0, + D(Aen-H - Aeﬁ-ﬂ)

an

This equation can be recast as

Gar = 08 — AND L (12)
60‘ n+1

with o7 = o, + DAEg,.;. The subscript n + 1 means that
all the quantities are evaluated at the final stage. For simplicity
it will be, in general, dropped in the derivatives. (12) repre-
sents a nonlinear system of equations with the stress tensor
components and one scalar (usually A\,.;) as unknowns. En-
forcing the satisfaction of the yield condition at the final con-
verged stage results in the necessary additional equation

Sirr=0 13)

The constitutive nonlinear equations [(12) and (13)] at the in-
tegration point level can be solved locally with a regular New-
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ton-Raphson method. In most cases, and for the yield functions
used in the present paper, (12) can be solved in order to obtain
explicitly the updated stress value as a function of the updated
plastic multiplier

0n+| = o'n-H(AAn-H) (14)
Furthermore, inserting (7) in (8) yields for finite increments
AKn-H = AKn+l(0n+h Aknd-l) (]5)

Substitution of these two equations in the yield function, cf.
(13), leads to a nonlinear equation in one variable, namely
AN,vpt fo1(AN,+) = 0. This constitutive equation is solved
here with a local Newton method. The derivative of £,.,(AN,+1)
with respect to A\, ;, which is needed in this procedure, reads
after some manipulation

o
9AN

o
= TaA_)\_h (16)

n+l

where the modified yield surface gradient oy and the hardening
modulus & are given by

S

o dKk d@ an

n+l n+l

For multisurface plasticity a similar procedure applies and (12)
reads now

a a,
sy = 0:‘-:]1 = AND a;f; — ANy /D fj (18)

n+1 n+1

We shall equally assume that this equation can be solved ex-
plicitly as

i1 = Cpet(BN ity ANz 1) (19)

As for single surface plasticity, (10) yields for finite increments
Kol = Kind (@ nats ANy iy, BNg,00); KT

= Kot 1(One1s ANyper, ARy i) (20

Substitution of these two equations in the active yield func-
tions leads to a nonlinear system of equations with a set of
scalar unknowns, namely A\, ,.; and A\,

SrnBX e, Arzpe) = 05 Sonet@Nrry BNa0) =0 (21)

This nonlinear constitutive system of equations is solved by a
local Newton-Raphson iterative method. The Jacobian neces-
sary for the Newton-Raphson scheme reads

o | o afy ok,
T T
— — — + ——
VoA, M I Yi3AN, ok, 9N,
Jn+1 =] -7 —===T7==—== + e
o af, 9K, | oo
r 09 | Y 0K r 90
Y25AN, ok, 9AN, | Y258, 2
22)
where
af; af; o, af, ax
e d h=-—T7"—— 23
3o ok 00 |, o 3 AN, |, &)

The problem that remains is how to determine the set of
active yield functions, see Simo et al. (1988). In the present
article a trial-and-error procedure to solve the return mapping
is used. It will be assumed that the set of initial active yield
functions is the one defined by Simo et al. (1988) (fi™ = 0).
If, after the return mapping is completed, any AN,,, < O or

! o1 > 0 is found, the number of active yield surfaces is ad-
justed accordingly and the return mapping is restarted. During



this process one restart may be required, or, rarely and only
for larger increments, more restarts may be required before the
correct number of active yield surfaces is obtained.

Evaluation of Tangent Operator

A tangent operator consistent with the integration algorithm
is needed to obtain quadratic convergence and a robust global
Newton-Raphson method. For single surface plasticity, differ-
entiation of the update equations [(12) and (15)] and the con-
sistency condition (df,., = 0) yield after algebraic manipula-
tion the consistent tangent operator D¥ as, see Lourengo et al.
(1994)

o H S VH

D? = — =H'-——— 24)
de |, h+ yTH™ 9g
do

where the modified compliance matrix H is given by

2

d
H=D"+ A\,., a_ogf 25)

The above expression for D? is particularly interesting as it
clearly shows that a nonsymmetric tangent operator will be
obtained even in the case of associated plasticity if the hard-
ening parameter update is not a linear function of the plastic
multiplier update, i.e., if Ak,; # cAN,.,, where ¢ is a constant.

Similarly, for multisurface plasticity, differentiation of the
update equations [(18) and (20)] and the consistent conditions
(dfin+1 = 0 and dfs,., = 0) yield after algebraic manipulation
the consistent tangent operator D as, see Lourengo et al.
(1994)

D? = fid% =H'—-H'UE + VVH'U'V'H' (26)
n+1
where the modified compliance matrix H reads now
- a’g &g
H=D"+ A\, a—c—; + Alaae 872 @7
the matrix U reads
_[38: 28
v= [60 ao] 28)
the matrix V reads
V=[v: vl 29)
and the matrix E reads
~h I 9h oKy
! I oK, dAN,
E=|_______ 4 (30)
ifl ——aK2 l —hz
3k, AN I
FORMULATION OF MODEL

Cap models originated in the field of soil mechanics. The
introduction of a spherical cap for the Drucker-Prager model
was firstly made by Drucker et al. (1957) to describe plastic
compaction and to enhance the behaviour in hydrostatic com-
pression. Since then various models were suggested, e.g., the
well-known Cam-clay model (Roscoe and Burland 1968). Re-
cently the numerical algorithm has been revised by Hofstetter
et al. (1993) with the use of unconditionally stable closest
point projection return mappings, tangent operators consistent
with the integration algorithm and proper handling of the cor-
ners. Previous cap models have been, in general, limited to

associated plasticity and hardening/softening of the cap while
the other yield surfaces remain in ideal plasticity.

For the application envisaged here the behavior found ex-
perimentally leads to a more complex model. Most masonry
joints have extremely low dilatancy and the model must be
formulatcd in the context of nonassociated plasticity. Also
softening behavior should be included for all modes of the
composite yield surface. The model presented in this atticle is
of general application but the formulation is shown in the char-
acteristic interface (o, T)-space. The reader can assume the
usual (/;, VJ,)-space formulation for regular continuum e¢le-
ments.

Tension Mode

For the tension mode, exponential softening on the tensile
strength is assumed according to the mode I experiments by
van der Pluijm (1992) (see Fig. 5). In this figure, the shaded
area represents the envelope of three tests. The yield function
reads

filo, ) =0 — fik) (€3]
where the yield value f, reads

f; =f,o exp (—'gl('); Kl) (32)

I
where f,, = tensile strength of joint or, more precisely, of unit-
mortar interface (which is the weakest link); and G; = mode
I fracture energy. An associated flow and a strain softening
hypothesis are considered. Assuming that only the normal
plastic relative displacement controls the softening behavior,
(8) yields

f(x = !uﬁ‘ = xl (33)
Shear Mode
For the Coulomb friction mode, the yield function reads
S0, k) = |T, + o tan d(ky) — c(k;) 34)

Based on microshear experiments by van der Pluijm (1993),
the yield values ¢ and tan ¢ are assumed

Co
€ = cp EXp <_G_}' K2> (35
and
Cyp — C
tan ¢ = tan ¢, + (tan &, — tan dy) — (36)
]
© [MPa]
0.40
0.30 & Experiments
—— Numerical
0.20
0.10 ¢
0.00
0.00 0.05 0.10 0.15

Crack displacement - u, [mm]

FIG. 5. Tensile Behavior of Present Model versus Experi-
mental Results from van der Pluijm (1992) ( £, = 0.30 MPa; G/ =
0.012 N/mm)
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Experiments
—— Numerical

o e

06 08 10
Shear slip - u, [mm]

0.0 :
0.0 02 04

FIG. 6. Shear Behavior of Present Model versus Experimental
Results by van der Pluijm (1993) for Different Confinement Lev-
els [c, = 0.87 MPa; tan ¢, = 1.01; tan ¢,=0.73; G/ =0.058 — 0.13¢
(N/mm)]

where ¢, = initial cohesion of joint; tan &, = initial friction
angle; tan &, = residual friction angle; and G} = mode II frac-
ture energy. Note that exponential softening is assumed for the
cohesion (see Fig. 6) and that, for simplicity, the softening of
the friction angle is taken proportional to the softening of the
cohesion. A nonassociated plastic potential g,

g2=|1| +otany —c (37

where a dilatancy angle ¢ and a strain softening hypothesis
are considered. In the computational implementation of the
model, the dilatancy angle is considered as a function of the
plastic relative shear displacement and the normal confining
pressure. Under increasing values of these two quantities, the
dilatancy angle tends to zero. This is physically realistic due
to the micro granular structure of mortar and is also confirmed
in the experiments, see van der Pluijm (1993). Assuming that
only the shear plastic relative displacement controls the soft-
ening behavior, (8) yields

ko= [uf] =X (38)

Permanent Coupling of Tension/Shear Mode

The tension and Coulomb friction modes are coupled with
isotropic softening. This means that the percentage of soften-
ing on the cohesion is assumed to be the same as on the tensile
strength and, for exponential softening, (33) and (38) must be
rewritten as

. . Gley . . G} fo. .
K,=>\,+a—;f;f‘;x2; K2=5f;-c—;’>\,+x2 39)

These relations can be directly obtained from (32) and (35).
It is noted that (39) according to Kuhn-Tucker conditions, cf.
(3), indicate that the shear and tension modes represent, in
reality, only one discontinuous yield surface and not two. The
two scalars shown as a measure of softening, k, and k., rep-
resent a single scalar. In the computational code however, the
measure of shear softening and tensile softening are updated
independently to posterior check which type of softening has
occurred. During postprocessing of the results, this is relevant
for a good understanding of the structural behaviour.

Cap Mode

For the cap mode, an ellipsoid interface model is used. The
yield condition is now given by

ﬁ(ﬂ, K3) = C‘nno'2 + Csst + C,,U' - 62('(3) (40)
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where C,,, C,,, and C, = set of material parameters; and & =
yield value. For the hardening/softening behavior the law
shown in Fig. 7 was considered. Note that the curved diagram
leads to a C' continuous & — € relationship (see Fig. 8). The
approach shown in Fig. 7 can be used for interface elements
because a direct relation between stresses and displacements
is established. The energy under the curve can be related to a
‘‘compressive fracture energy.”’
Using matrix notation, (40) can be rewritten as

filo, k) = 120 Po + plo — &(k,) “n

where P = diag {2C,,, 2C,,} and p = (C,, 0)".
An associated flow and a strain hardening/softening hypoth-
esis are considered. This yields, upon substitution in (8)

ks = M,V Po + p)(Po + p) 42)

Corners

The theory for multisurface plasticity is described in the
previous section. Only additional remarks about the corners
will be detailed here.

4 o 2 x?
[ &,(x)=6i+(a’|,-—ai)'\'————2
32(x) * %

_ _ _ _fx—x
F2(x) = Gp + (B — G} 7
m p

G1(x)

&5(K) = &, + (B ~ 57) exp(m X Fm )

() [

R Om ~ G,
withm=2 "¢
Kin = Kp

Xp Km I3

FIG. 7. Hardening/Softening Law for Cap Mode
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FIG. 8. Model versus Experimental Compressive Behavior
[Compressive Strength = 20.8 MPa; Inelastic Parameters from
Atkinson and Yan (1990)]
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For the tension/shear corner (39) yields a stronger penali-
zation than adjacent single surface modes as shown in Fig. 9.
This figure shows three different possible trial stress states
close to the corner and the respective return mapping. It is
further assumed that the yield surface at stage n + 1 is the
same for the three cases (this is clearly wrong but yields a
more legible picture), the stiffness matrix is equal to the iden-
tity matrix and the dilatancy equals zero. Then, for the shear
and tension modes, the amount of softening is measured by
the distance AN;,+; = |6™™ — @,,|. In the corner, according
to (39), the two values will be added representing a nonac-
ceptable penalty. For this reason a quadratic combination is
assumed, reading

/ G} ¢ ’ \/ G/ fo \’
K, = )+ [ —L20 ] k= L2y + (A)?
1 ()\1) (G;I o )\2> 2 (G; Co l) ( 2)
(43)

Note that these equations yield additional terms for the Jaco-
bian used for the local Newton-Raphson method, cf., (22). For
the shear/cap corner the yield surfaces are assumed to be un-
coupled.

NUMERICAL EXAMPLES

Tests on masonry shear walls were carried out by Raijmak-
ers and Vermeltfoort (1992) and Vermeltfoort and Raijmakers
(1993). Two types of walls were considered, either with an
opening in the center, hereby designated by ‘‘hollow wall,”’
or a complete panel, hereby designated by *‘solid wall.’” These
tests are particularly suitable for the appraisal of the model
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FIG. 10. Loads for Hollow and Solid Shear Walls: (a) Phase 1
—Vertical Loading; (b) Phase 2—Horizontal Loading

TABLE 1. Properties for Potential Brick Cracks

Kk, K fo G{

(1) (2) (3) 4)
1.0 x 10° 1.0 x 10° 2.0 0.08
N/mm’® N/mm® N/mm’® N/mm

TABLE 2. Elastic Properties for Bricks and Joints

performance as quite comprehensive experimental data was
recorded. Moreover, the parameters necessary to characterize
the material model are available from companion microexper-
iments,

The specimen consists of a pier with a width/height ratio of
one (990 X 1000 mm?), built up with 18 courses (16 active
courses and 2 courses clamped in steel beams) of Joosten solid
clay bricks (dimensions 204 X 98 X 50 mm®) and 10-mm-—
thick mortar (1:2:9, cement:lime:sand by volume). The piers
were subjected to a vertical uniformly distributed load p before
a horizontal load was monotonically increased under top dis-
placement control 4 until failure (see Fig. 10).

For the numerical analyses, bricks are represented by plane
stress continuum elements (8-noded) while line interface ele-
ments (6-noded) are adopted for joints and, if necessary, for
the potential vertical cracks in the middle of the brick. Each
brick is modeled with 4 X 2 elements. For the joints, the
composite yield function described is adopted and, for the po-
tential cracks in the bricks, a simple Mode I cracking model
with exponential tensile softening and immediate drop to zero
of the shear stress after initiation of the crack is assumed. The
material data are obtained from the micro tension, compression
and shear tests given before and are given in Tables 1-3.
When more than one value is given in the same column this
means that different values are used for the walls with an in-
itial vertical load p of, respectively, 0.30, 1.21, and 2.12
N/mm?, according to the microtests in samples obtained from
each wall. The hardening/softening law for the cap is the same
as defined for the hollow walls. The hardening/softening law
for the cap mode is defined by the set {&, k}; = {(f./3, 0.0);
(fur 0.09); (fu/2, 0.49); (f/7, +)}.

Hollow Walls

Two tests were successfully carried out with an initial ver-
tical load p of 0.30 N/mm®. An opening placed in the middle
of the wall defines two small, relatively weak piers and forces
the compressive strut to spread through both sides of the open-
ing leading to the ultimate cracking patterns shown in Fig. 11.

For the numerical simulation potential cracks in the bricks
are not modelled as the experimental results indicated, in gen-
eral, no visible cracks. Microcracking is likely to occur but it
was assumed irrelevant for this analysis.

The comparison between the numerical and experimental
load-displacement diagrams is shown in Fig. 12. The results
agree well. The calculated failure load is equal to the failure
load of one of the tests whereas the other test features a col-
lapse load 20% lower than the calculated value. A good im-
pression about the behavior of the model is also obtained be-
cause the calculated softening stiffness of the structure agrees
well with the softening stiffness of one of the tests. This in-
dicates that the same failure mechanism is predicted. It is how-
ever recognized that the behavior obtained numerically is more
brittle than the experimental observations.

Brick Joint Globally, the analysis captures well the experimental behav-
E v K, P iour of the walls, as illustrated in Fig. 1_3 (compare with F]g
" @ @) (4 11). In thi§ ﬁgur.c the word ‘‘damage’’ is used for the equiv-
T6.700 015 82 110- 82 6. 50, 36 alent plastic strain qf each mode qf the cap quel. Note th;.}t
N/vom? o N/mm? N/mrn® the cap ‘‘damage’’ is only shown in the softening range. Ini-
tially, two diagonal cracks arise from the corners of the open-
TABLE 3. Inelastic Properties for Joints
Tension Shear Cap

fo G Co tan ¢, | tan ¢, | tany G/ f Con C.s C,

(1) (2 (3) “) 5 (6) 7) (8) 9) (10) (11

0.25; 0.16; 0.16 0.018 14 £, 0.75 0.75 0.0 0.125; 0.050; 0.050| 10.5; 11.5; 11.5 1.0 9.0 0.0

N/mm? N/mm | N/mm’ — — — N/mm N/mm?* —_ — N/mm®
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FIG. 11. Experimental Failure Patterns for Hollow Walls
[Raijmakers (1992); Vermelitfoort (1993)]
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FIG. 12. Load-Displacement Diagrams for Hollow Wall

ing. These cracks are accompanied by less evident horizontal
cracks in the top and bottom of the small piers as well as one
horizontal crack in the bottom of the wall (see Fig. 13a). Under
increasing deformation, the diagonal cracks that arose initially
cannot progress to the compressed toes and two additional
diagonal cracks start to open (see Fig. 13b). These become
gradually predominant and, when the compressed toes at the
bottom and top of the wall begin to crush, the previous di-
agonal cracks become inactive. Finally, a collapse mechanism
is formed with the failure of the small piers in bending (crush-
ing of the compressed toes and extended horizontal tension
cracks) and the wall behaves similarly to four rigid blocks
connected by the hinges shown in Fig. 13c.

Remarkably it is possible to trace the complete path of the
test without numerical difficulties. Full quadratic convergence
was found during the entire prepeak and postpeak regimes.
Note also that the snap throughs found in the numerical anal-
ysis are converged states due to the opening of new diagonal
cracks and closing of previous diagonal cracks. These snaps
were traced with arc-length control over opening, shearing or
crushing of selected interfaces.

It is noted that, under the same loading conditions, the re-
sponses of the two tests, in terms of load-displacement dia-
grams, are different (see Fig. 12), and correspond to different
crack patterns (see Fig. 11). It is believed that this is due to
the combination of the scatter in the material properties and
the small number of units that constitute the wall. It seems
that different crack locations can be triggered for close failure
loads, i.e., within the observed 20% range. The lower collapse
load and more ductile behavior observed for one test corre-
spond to an early sliding failure mode, involving the part of
the wall above the opening, Fig. 11 (right). This is in oppo-
sition with the bending failure mode (with opening of the top-
right corner) of the same part of the wall featured by the other
test, Fig. 11 (left). A possible approach to reproduce an ob-
served failure mode is to penalize or strengthen a certain num-
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FIG. 13. Numerical Results at Horizontal Displacement d(Hol-
low Walls): (a) d = 0.5 mm; (b) d=2.0 mm; (c) d=25.0 mm

ber of joints in order to obtain exactly the crack pattern ob-
served in a specific test but such inverse fitting is outside the
scope of the present paper.

Mesh Insensitivity

The mesh objectivity of the composite interface model is
checked here by an additional numerical analysis in which
each brick is modelled with 8 X 4 elements. This leads to 4
times as many continuum elements and 2 times as many in-
terface elements. As shown in Fig. 14, the results are almost
identical, regarding the collapse load and the entire load-dis-
placement diagram used to characterize the behavior of the
structure. The interface cap model can be therefore considered
to be mesh insensitive. This is another advantage of the inter-
face approach when compared to crack band type models
where mesh objectivity is a debated issue.

Solid Walis

Tests were carried out for different initial vertical loads p
of 0.30, 1.21 and 2.12 N/mm®. The crack patterns for the dif-
ferent walls tested are shown in Fig. 15. The behavior of the
walls with a low initial vertical load is characterized by initial
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FIG. 15. Experimental Failure Patterns for Solid Walls: (a) P =
30 kN; (b) P =120 kN; (c) P=210 kN

horizontal tension cracks that develop at the bottom and top
of the wall. The collapse for all the walls is however charac-
terized by a diagonal shear crack including cracks in the bricks
and by crushing of the compressed toes.

From the failure patterns it is evident that cracks in the
bricks need to be modeled. This is confirmed in Lourengo and
Rots (1993). In that paper, the potential cracks in the bricks
were not included, which led to an overestimation of the col-
lapse load and a response much stiffer than observed in the
experiments. The comparison between numerical and experi-
mental load-displacement diagrams is shown in Fig. 16. The
experimental behavior is reproduced satisfactorily and the col-
lapse load can be estimated within a 15% range of the ex-
perimental values. The sudden load drops are due to cracking
in a single integration point of the potential cracks in a brick
and opening of each complete crack across one brick (note
that, when a potential vertical crack is almost complete across
one brick, relatively high shear stresscs are set to zero in a
single step). In the former case a mesh refinement is likely to
smooth the curve but, in the latter, a snap through or snap
back will, as in case of the hollow walls, most certainly be
found. Here, these points were sporadically ‘‘jumped over’’ in
the analysis by the use of a secant stiffness instead of a tangent
stiffness, only for the discrete cracking criterion in the bricks.
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FIG. 16. Load-Displacement Diagrams for Solid Walls
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FIG. 17. Numerical Results at Horizontal Displacement d
(Solid Walis): (a) d=2.0 mm; (b) d= 4.0 mm

For the interface cap model, the consistent tangent operator
was used throughout the analysis.

The wall with an initial vertical load of 0.30 N/mm’ was
chosen for further discussion because two specimens were
built. The behavior of the wall is well captured by the model
as illustrated in Fig. 17. Initially, two horizontal tension cracks
develop at the bottom and the top of the wall. A stepped di-
agonal crack through head and bed joints immediately follows
(see Fig. 17a). This crack starts in the middle of the wall and
is accompanied by initiation of cracks in the bricks. Under
increasing deformation, the crack progresses in the direction
of the supports and, finally, a collapse mechanism is formed
with crushing of the compressed toes and a complete diagonal
crack through joints and bricks (see Fig. 17b).

CONCLUSIONS

The present paper contains some computational results of a
research program aiming at development of rational and robust
numerical techniques for the analysis of masonry structures.
At this first stage a micromodeling strategy, in which the units
and joints are separately discretized, is considered.
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An interface cap model that includes all the possible failure
mechanisms of masonry structures has been developed. The
composite yield surface is implemented in an accurate and
robust algorithm. The fully implicit Euler backward return
mapping is solved with a Newton-Raphson technique for all
modes of the cap model, including the corners. Tangent op-
erators, consistent with the integration algorithm are derived
for all the modes of the cap model. Isotropic coupling is as-
sumed between tensile softening and decohesion. Application
of the model to experiments on shear-walls shows good agree-
ment and provides additional knowledge about the behavior
of masonry structures. The model is able to reproduce the
complete path of the structures until total degradation without
numerical difficulties. It is further noted that within the toler-
ance adopted for the satisfaction of the return mapping (1077
of the initial violation of the yield criteria), no inaccurate
points are found during the large scale analyses. The global
convergence for the analyses using exclusively the interface
cap model detailed in this article also behaves extremely well
(typically 3 to 4 global iterations are needed to reach an energy
norm of 107%). Finally, it is shown that the modeling strategy
adopted is mesh insensitive.

The writers believe that the importance of numerical mod-
eling for supporting safe and economic designs of masonry
structures is already evident from the present article. For a
thorough interpretation of the behavior of the shear walls pre-
sented herein the reader is referred to Lourengo and Rots
(1994).
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